AD=-AO&1 318 CALIFORNIA UNIV BERKELEY OPERATIONS RESEARCH CENTER F/6 15/5
3 OPTIMAL INSPECTION POLICIES FOR DETERIORATING MARKOV PROCESSES.(U)
APR 77 R D LEVIN DAAG29=TT7=G=0040
UNCLASSIFIED ORC=77-8 NL




JLLO £ i i

22

[ KIS

Il I
22 et ee




Y g A o T S R i s e e R N Ry PRFACI AT R e oRS R s y J L
A T i b s * ol i i G s o R i A Sk T R e i £ e T i e e g
A : : b y s NI IS

ADAC41318

.

FILE COPY

ORC 77-8
APRIL 1977

e

\
~ \_//"

OPTIMAL INSPECTION POLICIES FOR 5
DETERIORATING MARKOV PROCESSES ¥

by
ROBERT D. LEVIN

R
JuL 7 19Tt

~
!
V)
™
‘l
!

L uLl bJ u s

{ » ETaY Ve

- d B8R A% B

r‘“..‘,m-‘-" & b »:")-m:»,'.c‘ § W &

M1 A M q ,g

B i | b & 3

o
) ¥ o e Y LA™

ENITED RTINS STATEMENT B
L iN IS i T A lic releasel
Q {‘ P‘-‘ blic

Rppove nlimited

DW

 c——

gNIVERSITY OF CALIFORNIA - BERKELEY
=




m}.:&w:mshgwg —a st e e

|
|
|

OPTIMAL INSPECTION POLICIES FOR DETERIORATING MARKOV PROCESSES

Operations Research Center Research Report No. 77-8

Robert D. Levin

Aprdl 1977

U. S. Army Research Office - Research Triangle Park

DAAG29-77-G-0040

Operations Research Center
University of California, Berkeley ,//

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.




———_—

THE FINDINGS IN THIS REPORT ARE NOT TO BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF
THE ARMY POSITION, UNLESS SO DESIGNATED
BY OTHER AUTHORIZED DOCUMENTS.



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER & 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

OPTIMAL INSPECTION POLICIES FOR DETERIORATING 7/ Research Repert

MARKOV PROCESSES S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) » 8. CONTRACT OR GRANT NUMBER(s)
Robert D./Levin /| /DAAG29-77-G-0040 -

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ginan ERLEME~TT.PR0JEESST, TASK
Operations Research Center PSR T
University of California P-14240-M
Berkeley, California 94720 -

11. CONTROLLING OFFICE NAME AND ADDRESS 12. .REPORT DATE ___

U. S. Army Research Office | .~ Aprid 1977 #

P.0. Box 12211 13 NUMBER.OF PAGES

Research Triangle Park, North Carolina 27709 /77 57}

T4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)
Markov Chain Dynamic Inventory Model
Optimal Inspection
Maintenance Model
Markov Decision Process

Dynamic Programming
20. ABSTRACT (Continue on reverse aide If necessary and identify by block number)

(SEE ABSTRACT)

DD . :2:'“73 1473 EDITION OF | NOV 65 |S OBSOLETE
S'N 0102-LF-014-6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




TR

T e ——— Y

ACKNOWLEDGEMENT

| I wish to express my gratitude to Sheldon Ross, my

\ advisor, for truly inspiring teaching; to my
parents, for constant encouragement, and to Elise,
for her love.




ABSTRACT

A model is presented of a Markov process whose state is unknown except
‘ when an inspection is performed. The evolution of the process is
governed by fixed transition probability matrices P and Q wunder
non-inspection and inspection, respectively. The costs of inspection
and non-inspection depend on the current state. The objectiv2 is to
characterize inspection policies which minimize expected tocai dis-
counted cost.

The following specific models are presented. Model I is a process
which starts in state O and is terminated when, on inspection, the
state is found to exceed some fixed value M . 1In Model II the process
is repaired (reverts to state 0) when the state at inspection exceeds
M . Simple conditions are given which imply that the optimal inspec-
tion interval is a non-increasing function of the last observed state.

Model III is an inventory process with uncertain supply as well as
demand. Given order size n , the number received is Binomial (n;p)
Costs of ordering, storage, and shortage are incorporated. In the
single period case, conditions are given which imply that the optimal
order size is non-increasing in current inventory. This result extends
to the undiscounted multiperiod case provided the holding cost is zero.
A counterexample is given for a two period case with linear, non-zero
holding, shortage, and ordering costs.
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CHAPTER 1

MARKOV INSPECTION PROCESSES:
INTRODUCTION AND APFLICAT1ONS

1.1 Introduction

We will be ccncerned with processes for which the state is not
known with certainty uniess a specific act of inspection is performed.
Once the state is determined, a maintenance action ics chosen according
to a policy which is fixed in advance. Whether or not the process is
inspected, it undergoes a2 random transiticn into a new state. Thus,
at each time period, a choice must be made: to operate the prccess
without inspection, or to inspect, and possibly maintain the process.

A variety of problems which have appeared in the literature
fit this model. The applications we will consider fall urder threse
main headings: terminating processes, repairable processes, and an
inventory model with uncertain production. In this chapter we will

-~

discuss briefly each of these models, and give applications. 1In
Chapter 2, a common mathematical framework for these models is
developed. We prove a general theorem about the structure of cptimal

policies. 1In Chapters 3 and 4 we explore in detail the models pre-

sented in this chapter, and apply the results of Chapter 2.

1.2 A Brief Summary of the General Model

Our underlying process is discrete in time, and its state can be
described by an integer. 1In general the state is not known.
If the process is not inspected, a state dependent cost is in-

curred. The process undergoes a random transition according to a

transition probability matrix P . The state remains unknowmn.




If the process is inspected, again a state dependent cost is

incurred. The process undergoes a transition according to a
(possibly different) probability matrix Q . Thus, the act of
inspection may affect the underlying process. In addition, under
inspection the next state of the process beccmes known.

We shall assume throughout that the process is Markovian.
This means, given the present state and decision, that future
states (and costs) are conditionally independent of past states
and decisions.

The process described above will be called a Markov inspection
process. For a more formal definition, see Zhapter 2.

We will be concerned with characterizing the structure of policies
which minimize the expected total discounted cost (or average cost,

where appropriate) of operating the process.

1.3 Model I: Terminating Inspection Processes

In this model we will assume that the process has a finite
state space {0,1, ..., N} . When inspection occurs and the process
is discovered to be in a state j which exceeds some critical value
M , the process terminates.

The terminating process model may be applied to the problem
of minimizing the operating cost of a non-repairable machine. We
suppose the machine can be in any one of N + 1 states ranging
from O (perfect) to N (failed). Transitions occur according
to a Markov chain and the state remains unknown unless the machine
is inspected. The cost of inspection depends on the state, and

there is a cost per period for undetected failure.




In Chapter 3 we give conditions such that the optimal number
of periods between successive inspection is a nonincreasing function
of the state at last inspection.

A second example of a terminating inspection process is the
"optimal reject allowance'" problem. In its simplest formulation,
a shop must fill an order for N items. It costs Co + kC to
produce a lot of k items. Each item has a fixed probability g
of being defective, independently of the others in the lot. Thus
the number of usable items resulting from a lot of size k has
distribution Binomial (k;1 - q) . The problem is to compute the
optimal lot size k*(N) , or equivalently, the optimal reject allow-
ance k*(N) - N . This problem is studied in detail by A. Beja [1].

We may consider Bejz's model as a terminating inspection process
as follows. The state is the number of good items cn hand, or N ,
whichever is smaller. If k items of the present lot have been
produced but not inspected, we may produce another item without
inspection, or terminate production and determine the number of good
items. The latter action corresponds to inspection. If the state,
after inspection, is less than N , a new lot must be started and a
set-up cost C0 is incurred. (This corresponds to an inspection
cost in our general model of Chapter 2). If the state, after inspec-
tion, is N , the process terminates.

Beja proves that the optimal lot size k*(N) is nondecreasing
in N . He also shows that, if f(k) 1is the cost of first producing
a lot of size k , and then continuing with an optimal policy, then

f(k) 1is quasi-convex in k . That is,
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£(k + 1) < £(k) for k <k ()

and

£k + 1) > k(k) for k> k (N) .

These results, besides being of theoretical interest, have
computational implications which are useful in finding optimal
policies.

In Chapter 3, using our Markov inspection process formulation,
we will extend these results to the case where the output from a
lot of size k 1is determined by k transitions of a Markov chain.
This includes the binomial case, the batch producticn case, and, in
particular, the case where the number of usable items has the Poisscn

distribution with parameter kX .

1.4 Model II: Inspection Processes with Repair

This model differs from the terminating inspection model in
that, when an inspection takes place and the state is discovered
to exceed a critical value M , the process is repaired and reverts
to state O instead of terminating.

A motivating example is the production process described by
Sackrowitz and Samuel-Cahn [11], in which the states of successive
units produced form a Markov chain. A uait mav be inspected st
fixed cost, and, if defective, may be replaced by a perfect item.
If not inspected, the item becomes part of the output process without
being observed. Under the assumption that the Markov chain is
irreducible, the authors prove that a stationary inspection policy

is optimal. That is, if the last item inspected was in state i ,




it is optimal to produce a fixed number t of items before

inspecting again.

In the present work we are assuming that the process cannot
improve (decrease in state) spontaneously. We feel this is more
realistic than the assumption of irreducibility. When state N
is reached, and discovered via an inspection, the process is repaired
and reverts to state O . In Chapter 3 we will present conditions
under which the optimal inspection intervals ti are nonincreasing
p iy I

Much work has been done on the related three actiocn model
where no action, inspection, and repair are independent alternatives.
In particular, S. Ross [10] considered the observed state space to
be {P = (PG’Pl’ Ao i)k Pi >0, 2 Pi = 1} with the interpretation
that Pi is the posterior probability that the underlying process
is in state i . He proves that the optimal inspect and repair
regions are convex. For the two-state problem this implies a
four region structure for the optimal policy: Take no action if
0<pc< Py » inspect if Py EP SPyy take no action if Py 2P < P3
and repair if Py <p<1l. (Here p 1is the probability of being
in the failed state).

In our model there will be only one critical number for the
two-state case: 1if p < Py take no action; if »p 2y inpsect
(and repair if necessary).

Ross' work was generalized by D. Rosenfield [ 8 ], who presents
a model in which the optimal policy can be characterized by thrce
critical numbers for each underlying state. Under specified condi-

tions on the costs and transitions matrix, Rosenfield proves that,




if the last known state was i and k transitions have since
occurred, it is optimal to take no action if O sk < kl(i) X

inspect if k,(i) < k < k,(i) , take no action if k,(1) < k < kq(i) ,
and repair if k i_k3(i) . Two or more of the critical numbers may
coincide for a given i . In addition, he shows that kl(i) and
k3(i) are nonincreasing in 1 .

Under conditions similar to those given by Rosenfield, we will
show in Chapter 3 that an analogous result holds for ocur two action
model. That is, the optimal policy is specified by a single non-
increasing sequence of critical numbers k(i) . It is optimal to
take no action if k < k(i) and inspect (and repair if necessary)
if k > ki) .

We feel that the present model has several advantages over
Rosenfield's. In our model repair must be preceded by inspection.
This is realistic in many physical situations. Consider, for example,
a complex system of components operating in a "black box.'" Suppose
that, once the box is opened, the state of the system becomes known.
If it is necessary to open the box in order to repair the system, then
the present model, rather than Rosenfield's, is applicable.

Furthermore, our results are valid in somewhat greater generality.
Rosenfield assumes that the cost of inspection is a constant surcharge
over the cost of non-inspection. We need only a weaker assumption
that the cost of non-inspection is nondecreasing relative to the cost
of inspection as the state increases.

Finally, since our inspection repair process is a two action
problem rather than a three action problem, optimal policies are much

easier to compute and administer.

(713




1.5 Model III: An Inventory Process with Uncertain Production

In this model random demands for a commodity occur over a
number of periods. The problem is to minimize the expected dis-
counted sum of production, storage, and shortage costs. As stated
thus far, this is the usual dynamic inventory model (see for
example [ 5]).

The distinctive feature of this model is that the output from
a given production lot or order is random. The simplest case is
the binomial case where, when n items are produced the output of
usable items is distributed Binomial (n,p) for some fixed p .
More generally, the model includes the case of random batch produc-
tion and, in particular, the case of Poisson production.

We assume a linear cost of production (no set-up cost). A
storage cost h(t) is imposed in each period fcr t wunits of
inventory in excess of demand, and a shortage cost k(t) is imposed
for t wunits short of demand. Unsatisfied demand is carried over
(backlogged) to the next period.

A similar model was considered, for the one period case, by
Karlin [4]. Under the assumptions that the holding and shortage
costs are convex, he proves that the optimal production level
n*(x) is nonincreasing in current inventory x . (Intuitively -
the less stock on hand, the more should be produced).

However, Karlin's approach does not extend to the multiperiod
case. The reason is that the n period optimal cost function need

not be convex. A counterexample is given in Chapter 4.




In Chapter 4 we reprove and extend Karlin's result, without
assuming convexity but with some restriction on the distribution
of demand (assumed to be PF2 , see [6]).

We proceed by formulating the problem as a Markov inspection
process whose state is the current inventory. The production
decision is regarded as being made sequentially. Thus, suppose
t items (or batches) have been produced in the current period, but
the output of usable items has not been determined. Either an
additional item (batch) may be produced, or production for the
period may be terminated and demand satisfied. The latter action
corresponds to inspection, in our general model, and the former,
to non-inspection.

Applying the theory developed in Chapter 2, we prove that
Karlin's intuitive result extends to the multiperiod case, provided
there is no storage cost and no discounting.

When there is a storage cost or discounting the result need not
hold. 1In Chapter 4 we present an example of a two period problem
with constant demand and linear production, storage, and shortage
costs for which monotonicity of the optimal production level is
violated. In this example it is optimal to produce one item when
initial inventory is three items, but optimal production is zero
when initial stock is two items. Thus, our intuition may fail even
in a very simple multiperiod problem.

In the case where there is no storage cost, we are able to obtain
the result that, if it is optimal to produce when inventory is x

and L periods remain, then it is optimal to produce when inventory

is x and L' periods remain, L' > L . We are unable to obtain
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the stronger result that the optimal production level is nondecreasing
in the number of periods remaining. This seems to be an open
question.

For the one period case with linear holding and shortage costs
and Binomial (n;p) production, we show that the optimal lot size
for a given initial inventory is nonincreasing in the unit ordering

and holding costs and nondecreasing in the unit shortage cost. The

optimal cost is nonincreasing as a function of p .




CHAPTER 2

MARKOV INSPECTION PROCESSES: THE GENERAL MODEL

2.1 Description of the Model

Assume that the state of a process at time n 1is given by an
integer Xn . In general, we will assume that xn is not known
with certainty. What is known about the process can be expressed
by the ordered pair Yn = (i,t) , where i = Xn-t is the most
recent state known with certainty and t periods have elapsed

since the state was last determined.

In any observed state (i,t) there are two possible actions:

action 0: non-inspecticn

action I: inspection.

Let An denote the action taken at time n .

Under action O the process undergoes a transition according to

the transition probability matrix P . Thus P(Xn+1 =k l Xn i

An il B ij

if Xn+l =k , acost O

independent of the history of the process. In addition,
K > 0 1is incurred and no new information
about the process is obtained. Thus if Yn = (i,t) and An =0,

the process undergoes t + 1 consecutive transitions according to

P between Xn—t =1 and Xn+1 = j , so that P(Xn+1 = 3 | Yn = (I.E)
An = 0) = P;;l The expected cost incurred will be C(Yn’An) =
c(i,t;0) = Z Pi}loj Since no information is gained, the new

observed state will be Yn+1 = (1,t > 1)

ess————




Under action I the process undergoes a transition according

to the transition probability matrix Q . Thus P(Xn+1 =k | Xn = 4

An =1) = ij , and again xn+l is conditionally independent of
7 b 4 =
the history of the process, given Xn and An o TE X+l ks
a cost Ik > 0 1is incurred. Moreover, the new state X becomes

known. Thus we interpret action I as inspection. If Yn = (1,t)
and An = 1 , the process undergoes t consecutive transitions
under P , followed by a transition under Q , between states

X =i and Xn+l = j . Thus P(Xn+l = 3 ] Yn = (i,t) and

A =1) = z Pikaj . It follows that under action I the expected

o s - - y Ex t )
cost incurred will be C(Yn,An) = C(i,t;I) jzk PikajIj’ and the
next observed state will be Yn+l = (j,0) with probability

Y
E LT

Definition:

We will call such a process a Markov inspection process.
As will be seen in subsequent chapters, the mcdels presented

in Chapter 1 are all examples of Markov inspection processes.

2.2 Definition and Existence of Discounted Cost Optimal Policies

We will study the problem of minimizing the expected discounted
total cost of the Markov inspection process described in 2.1.

We will assume that there is no upper bound to the number of
non-inspections (actions 0) between two successive inspections
(actions I), but the process terminates after L(< ) inspections

take place.
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In some applications, e.g. models I and II of Chapter 1, a
fixed period of time elapses between transitions. In this case
future costs are discounted at a rate o < 1 per transition.

In other applications, e.g. our inventory model (model III
of Chapter 1), transitions involving non-inspection are instantaneous
and one time unit passes between successive imnspections. In this
case future costs are discounted at a rate B8 < 1 per inspection.

In the remainder of this section we will treat both cases
simultaneously. On our applications, however, either o =1 or

B =1 . Note that we are also considering the undiscounted case

Let w be a policy, i.e. any rule for choosing actions. Let
Yn(n) be the observed state at time n , under policy = . Let
An(ﬂ) be the action chosen by 7 at time n . Let Ti(ﬂ) be the
number of transitions under © up to the %-th inspection. Let
To(n) =0 and fix o , B € (0,1]

Define the expected discounted cost of starting in Yo = (i,t)

and operating under © to be

Vi, t,h,%) =

(2.2.1) at
b=l Tpr (M .

A ) a C(Y (m),A (M) | Y = (4,¢)
=0 n=T, (m)+1 i -

where EW denotes the expected value with respect to the distributions
of Yn(n) v An(n) y and Tl(ﬂ) induced by 7 . Note all costs are
nonnegative so that E“ is well defined.

*
Let V (i,t,L) = inf V(i,t,L,m) .
m




Definition:

*
A policy is optimal if

* *
Véi,e,L,t ) =V (i,e,L) for all i , t and L .

We are now ready to state a theorem on the existence of optimal

policies.

Theorem 2.2:

There exists an optimal policy m such that An(w) is a
deterministic function of the current observed state Yn(w) and the
nunber of inspection opportunities remaining, L . That is,

An = f(Yn(n),L) ‘

Furthermore V*(i,t,L) satisfies the following optimality

equation:

t+l

v*(i,t,L) = min {z Pij

*
oJ. + oV (1,t + 1,L) ;

€2.2.2)
]800 AV (k,0,L - 1)1}

and f(i,t,L) may be any function such that f(i,t,L) = 0 when
the first term in (2.2.2) is minimal and f(i,t,L) = I when the
second term is minimal.

If a <1, and the sequences {0,} , {I,} are bounded, then

] ]
*
(2.2.2) determines V (i,t,L) uniquely.

Proof:

The last result is a standard theorem in discounted dynamic

programming [2 ]. The remainder of the theorem, which holds even
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when L =« | and a =8 =1, follows, since all costs are non-

negative, from standard results in negative dynamic programming [12].H

Remark:

The first term in the optimality equation (2.2.2) is the expected
cost of the policy: perform action 0O, then proceed optimality.
The second term is the expected cost of the policy (which we will
call vo): perform action I, then proceed optimality. Thus the
optimal action is that action which yields the minimum cost, when
all subsequent actions are optimal. This is just the well known

principle of optimality.

2.3 A Structure Theorem

In this section we will prove a general result which will apply
to the models presented in Chapter 1.

We begin with some definitionms.

Definition:

A policy 7™ 1is said to be monotone if, for each L , there

*
exists a nonincreasing sequence t (i,L) such that

*
I if Y = (E:€) and & > & (1,L)

An(W) - % *
0 1if Yn = (1,£) and €t < £ (i,L)

when L 1inspection opportunities remain.
Let ™o be the policy: perform action I, then proceed

optimally.




Let LY be the policy: perform action O, then proceed according

to 7w

Definition:

A policy m 1is said to be a one stage look-ahead policy if
An(ﬂ) = I if and only if V(Yn(ﬂ);L,ﬂo) < V(Yn(n);l-,nl) i.e.
m inspects whenever immediate inspection is cheaper than non-

inspection followed by inspection, subsequent actions being optimal.

Remark:

The terminology 'one stage look-ahead policy'" comes from the
theory of optimal stopping problems [ 9 ]. In the present case we
identify action I with "stopping' and paying a terminal cost equal
to the expected cost of acting optimally for the remainder of the
process. Action O is identified with "continuing.'" A one stage
look-ahead policy stops exactly when stopping is less costly than
continuing one more stage and then stopping.

Conditions for a one stage lcok-ahead policy to be cptimal can
be found in [9].

The purpose of this section is to give sufficient conditions
for the existence of an optimal policy that is a monotone, one stage
look-ahead policy.

We will need to make the following assumptions on the transition

matrix P :
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Assumptions:

Al: P 1is upper triangular, i.e. Pii =0 for j < 1i; and
Pii <1 . (If the number of real states is finite
(N+ 1) we allow P__=1)

NN
A2: P is TP2 (totally positive of order 2), i.e.

P . 20 Forail L <" . 347§

P =
By e gty

Assumption Al means that the real state of the process cannot
decrease under action O, and, with positive probability, may increase.
Assumption A2 is a technical condition which implies among other
things that P satisfies the increasing failure rate (IFR) property

(31, t.e. P& il Xn) is an increasing function of Xn for

n+l Z
each j . The TP2 property is needed in the proof of Lemma 2.3.1
to follow. A complete discussion of total positivity is given in [6].

We will also require the following

Structural Conditions:

(SCl): There exist critical numbers such that V(j,O,L,w0)4i

jL
V{3,0,L,m.) for j < jL and V(j,O,L,nO) < V(j,O,L,Wl)
for J z_jL . (Thus if the true state is known to be
j > 3, , then immediate inspection is less costly than
waiting one period and inspecting).

(SC2): For each (i,t) there exists t'> t such that inspection

is strictly optimal in state (i,t') , when L 1inspection

opportunities remain.

—y . , v I —— : _ v J



The above structural conditions will be verified for each of

the models presented in Chapter 1, in succeeding chapters.

We are now ready to state the main theorem of this chapter.

Theorem 2.3:

If assumptions Al and A2 are satisfied, and the structural
conditions (SCl) and (SC2) hold, then a monotone, one stage look-

ahead policy is optimal.

Before beginning the proof, we will need one more definition

and a lemma.

Definition:

A sequence Aj is said to have the single crossing property

(scp) if Aj > 0 dimplies AP > 0 ‘for all k > j

Remark:

The usual definition is somewhat weaker: Aj > 0 = Ak >0
for k > j . This is not sufficient, without further argument, to
2nsure monotonicity of the critical numbers. See the appendix to

this chapter for further discussion and a proof of the following

lemma.

Lemma 2.3:

157 Aj satisfies the SCP in j and P satisfies Al and A2,

then z Piij satisfies the SCP in 1 and ¢t .

Proof:

See the appendix to this chapter. @

17
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Proof of Theorem 2.3:

Definirg 4(i,t,L) = V({i,t,L,m. ) - V(i,t,L,ﬂO) and conditioning

on the true state Xn given Yn = (i,t) yields:

(2.3.1) A(L,e,L) = | P.AG5,0,L)

3

(This key result may also be seen algebraically by direct expansion
of V(i,t,L.7.) and V(i,t,L,nl))
The first structural condition (SCl) is equivalent to

A(1,0,L) <0, j <4 and A(,0,L) > 0 for J > j. , i.e. AG,0,L)
— L e

L
has the SCP in j

It immediately follows from Lemma 2.3 and (2.3.1) that A(i,t,L)
has the SCP in i and t .

We can now define the critical numbers t*(i,L) =
min £t : A(L,t,L) > O}

By (SC2), for some ti , inspection is strictly optimal in
(i,ti) , which implies that A(i,ti,L) > 0 . Hence t*(i,L) < ®

By the S€P in t , A(d,t,L) < O for ¢t < t*(i,L) and
A(d,t,L) > 0 for t :_t*(i,L) v

Furthermore, since A(i,t,L) satisfies the SCP in i , we must
conclude that t*(i,L) is nonincreasing in i . (Otherwise, if
t*(i + 1,L) > t*(i,L) , then, for some t , A(i,t,L) > 0 and
A(L + 1,t,L) < 0 , contradicting the SCP).

Let us define the policy = by An(n) = I if and only if L
inspection opportunities remain, Yn = ({,6) , and ¢ 3_t*(i,L)

* *
Then is a mcnotone policy. is also a one stage look-ahead

*
policy, since inspects in state (i,t) 1if and only if




immediate inspection is less costly than non-inspection followed
by inspecticn, subsequent actions being optimal.

It remains only to prove that n* is optimal.

Let ¢t < t*(i,L) . Then V(i,t,L,nl) < V(i,t,L,nO)

The term in the optimality equation (2.2.2) corresponding to

action 0 is

*
Z P?flo, + @V ({,e + L. L) = 2 P?Tlo, + aV(i,t + 1,L,7.) =
- & B g 3 3 0
Vi, E.L,1.) :_V(i,c,L,rO) 5

which is the term of (2.2.2) corresponding to inspection. It
follows from Theorem 2.2, that action O is optimal in state (i,t)
when t < t (i,L)
We next consider the case t Z_t*(i,L) .  Suppose, to obtain
a contradiction, it is strictly optimal to perform action O when
Yn = ({ ") 5 £ 3_t*(i,L) « Let t'"" = min {t > t* : action I
is optimal in (i,t)} . (The above set is non-empty by (SC2)).
Note that action O is optimal in (i,t'' - 1) and action I is
optimal in (i,t'') . This implies that T is an optimal policy
in state (i,t'' - 1) , hence V(i,t'' - l,L,vl) < Vi1,t*" = l,L,nO)
But t'' -1 i't*(i,L) so A(i,t'' - 1,L) > 0 , yielding a con-
tradiction. It follows that action I is optimal for all t 3{t*(i,L)
Thus we have shown that ﬂ* is optimal, and the proof is

complete.l
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Appendix to Chapter 2:

One of the major properties of TP2 matrices is that they
preserve the single crossing property. In this appendix we will
use the term weak single crossing property (WSCP) for the usual
definition, with weak inequality instead of strict inequality.
(See the remark following the definition of the single crossing
property).

Karlin [ 6 ] proves that if Aj has the WSCP in j , then
) PijAj has the WSCP in i . In [ 7] Rosenfield shows that if
in addition to being TP, (Al), P 1is upper triangular (A2) then
ZP;:jAj has WSCP in i and t .

We wish to extend these results to the strong version (SCP)

defined above.

Let A(j) have the SCP and P satisfy Al and A2. Let

1 0"
By Rosenfield's lemma, A(io,tl) > 0 . Suppose, to obtain a con-

t 3 5
A(d,t) = z PijA(J) . Suppose A(lo,to) >0 , and t, > ¢t

tradiction, A(io,tl) =0. Let 0< € < A(io,to) and let
‘A(j) -~ € 1f &4(J) =0

a'(3) = . Then A'(j) satisfies the SCP.
}A(j) if A() > 0

Letting A'(i,t) = z P;jA'(j) , we have A(i,t) - ¢ < A'(i,t) < a(d,t).

Hence A'(io,to) >0 . Now A'(i,t) satisfies the WSCP in t so
AJ , - e ¥ .

that A (iO’tl)'z 0. But A (io,tl) < A(io,tl) 0 , yielding a

contradiction. Thus A(i,t) has the SCP in t . The same proof

shows that A(i,t) has the SCP in 1 . This completes the proof

of Lemma 2.3.10

it
g
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CHAPTER 3

MODELS OF INSPECTION FOR TERMINATING AND REPAIRABLE PROCESSES

-

3.1 INTRODUCTION

In this chapter we will characterize the structure of optimal
policies for the terminating and repairable processes (models I and
II) introduced in Sections 1.3 and 1.4

We will assume that the underlying process has a finite state
space {0,1, ..., N} . When inspection takes place and the state
is cbserved, termination or repair occurs according to a policy
which is fixed in advance. This policy will be assumed to have the
following form: Terminate (repair) the process when the observed
state j exceeds some critical value M < N . Otherwise the process
is not altered by inspection.

The repairable model fits our general scheme of Chapter 2 as
follows: Under non-inspection the transition probability is

P(X

il ™ | Xn = 1,An =0) = Pij as in Chapter 2. Under inspection,

the transition probability matrix Q 1is related to P by

1

N P j=0

io j=M ij

Q11=P(X1+1=j'xn=i'An=I)= P e Bl
0 i > M

Thus, under inspection the process is returned to state 0 if it
would otherwise have been in a repairable state (> M) after a

transition according to P . For j > M the inspection cost I

j

is considered to include the cost of repair.




2

(%)

Remark:

Under our assumptions on the costs and transition matrix, if
the underlying state j were known at all times, the optimal repair
policy would have the structure given above. That is, it is optimal
to repair exactly when j > M for some M . More general sufficient
conditions for this type of policy, called a "control limit policy"
to be optimal, are given by Derman [ 3 ].

To show that the terminating process also fits our general model,

. : v*
we will define a terminated state N . The process enters state
* y X :
N only under inspection when the state would otherwise have been
> M under a transition according to P . hus the transition matrix
P 1is defined as in Chapter 2 by PL = P(X =3 | X =1i,A = 0)
n-

with the additional conditions that P =0

The transition matrix Q for inspection is given by

Pl F <M
1]
Q,. = P(X =j | X =4,A =1) ={0 M < N
\L' ('.'L""l ] n vn ) . "_J_'l
i | *
¥ Py j =N
: |
k=M
for 1 <N , and Q . 4 = 1 . We further define the inspection cost
N N
I . and the non-inspection cost O , to be zero. Thus, when the
N |

process is inspected and discovered to be entering a state j > M
it is placed in state N ancd no further costs are incurred. The
inspection cost I, , j > M 1is considered to include any cost of

terminating the process.




In this chapter we will consider the number of potential in-
spection opportunities L to be infinite. We will discount costs
at each transition (inspection or non-inspection) so that a <1
and B =1 .

In light of the above assumptions, the optimality equation

(2.2.2) reduces to

*
(3.1) V (i,t) = min {Z g s
1j J

We will show that the optimal policy for both processes is
*
specified by a nonincreasing sequence of critical numbers t (i) ,
such that it is optimal to inspect in state (i,t) if and only if

*
t >t (i)

3.2 Structural Results for Model I

In order to use the results of Section 2.3, we will again make
assumptions Al and A2 of that section: The transition matrix P is
upper triangular with Pii <1 for 4 <N and P is TP2 .

We will need to show that the structural conditions (SCl) and
(SC2) of Section 2.3 hold. We will therefore make the following
assumptions on costs:

Bl: Ij z_Oj s <M . and Ij - Oj is nonincreasing in j ,

for J < N .

B2y I, < 0j i z E for j > M.
J

Ik

Assumption Bl means that, for the 'good" states j < M , the

cost of inspection is larger than the cost of non-inspection, but

¥r. *
0j +aV (i,t +1);) 2 (Ij + aV (J,O))} .

23
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the the cost of non-inspection increases relative to the cost of
inspection as the state becomes higher.
In order to interpret condition B2, w2 will introduce the

auxiliary observable state (j,-1)

Definition:
We will say that L (j,-1) if the value of X is known

to be j before the decision A is chosen.

0

Note that this is consistent with our definition of (j,t)

£t >0 .

Assumption B2 is equivalent to V(j,-l,no) <V(,-1 } or

""1
A(j,-1) > 0, for j > M . This means that, given the next state

will be j > M , immediate inspection and stopping is less costly
than non-inspection followed by immediate inspection and stopping.

If inspection is strictly optimal for state (j,-1) , j > M
then B2 must hold. The reserve implication is alsoc true, as a result

of the proof of Theorem 2.3.
oN

For the case M = N , B2 reduces to IN < T e i.e. inspection

(and stopping) is cheaper than non-inspection forever.

Finally, if a =1 , Oj >0, and Ij is nondecreasing in j
j >M , then B2 is satisfied.

We are now ready to state the main theorem of this section.

Theorem 3.2:

Under the assumptions Al, A2, Bl and B2: There exist critical
*
numbers t (1) < » nonincreasing in {1 , 1 < M | such that, defining

*
m  to be the policy which inspects at (i,t) if and only if




25

* *
3 ¢tk (1) , is optimal.

* *
Furthermore is a one-stage look-ahead policy, i.e.

inspects at (i,t) if and only if inspection at (i,t) is cheaper
than non-inspection, followed by inspection at (i,t + 1) , sub-

sequent actions being optimal.

Proof:

; By Theorem 2.3, it is sufficient to establish the structural

conditions (SCl) and (SC2). We will need the following two lemmas:

Lemma 3.2.1:
t-to

*
Information inequality: V (i,t) Z.Z Pij

*
v (j,to) for all

: -1 :_to < €.

Proof:

Let m be the policy "proceed optimally under the assumption

that Y, = (i,t) ." Let C(r) =] anC(Yn(ﬂ),An(v)) be the (random)

*
total discounted cost under m . Thus V (i,t) = V(i,t,m) =

E(C(m) | Y, = (1,8)) = E(C(™) | X_, = 1) = (using the Markovian

t-t t-t

0 0
property of the process) z 10 E(C(W) l . = j) = E P V(3,tym) 2
ij to 13 0

o e

t-t
0,..*
) Pij V (e .8

Remark:

We call this the information inequality because it states that,
if the decision maker is informed of the outcome of the (r = to)
step transition from state 1 , and acts optimally on that infor-

mation, this action cannot increase total expected cost.

, _ u
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Lemma 3.2.2:

oY

(a) For any sequence Ao,Al, e AV and any i ,

: t
thPﬁA,-A

tro - L

*
(b) 1lim V (i,t) =

torx™

I
—

N

Proof:

From Assumption Al, the states {0,1, ..., N - 1} are transient

and state N 1is absorbing. It follows that

This proves (a).
To prove (b), let e > 0 be given and let T be sufficiently
large that t > T implies PEN >1-¢. Then for t > T ,
£l iN = L

V*(i (o) A B e D X Pt+1(I + aV*(j 0)) <Me + (1 - ¢)1
’ ) A} ij j ’ ol & N

*
where M = max {Ij + aV (j,O)} is a constant independent of ¢

* *
(Vv (N,0) 0 since (N,0) 1is identified with (N , 0)) . It

follows that

b Caaade S

*
Iim sup V (1,t) < L
f' t > ®

N

To obtain the reverse inequality, we will use Lemma 3.2.1 to

*
obtain V (4,t) > ~1) . Hence if t > T , we have

* [~
bav]
-3
~
.
-

*
V (1,t)

| v

(1 - €)V (N,-1) . Since N is an absorbing state,

either it is optimal not to inspect at all future times, at cost




[ *]

(0)

1 3‘0 , or it is optimal to inspect (and stop) at cost IN » By
O

*
B2, IN 1= , so inspection is optimal and V (N,-1) =

IN .
*

Thus T > t implies V (i,t) > (1 - e)IN . It follows that

1lim inf V (1,£) L and the result is proved.l

t > >

Proof of Theorem 3.2 (continued):

To establish (SCl) we must show that A(j,0) has the SCP in j
As in the proof of Theorem 2.3, we may express A(j,0) = E ijA(k,—l\
By Lemma 2.3, if A(k,-1) satisfies the SCP, so does A(j,0)
Notice that A(k,-1) = V(k,-l,nl) - V(k,-l,no) = Ok +
* *
@ ] B, (T, +aV (£,0)) - (I, +aV (k,0)) . If k2>M, then

*
vV (2,0) =0 for £ > k , so that A(k,-1) = Ok + a

>~
L
—
|
—
v
o

by Assumption B2.
Thus, to establish that A(k,-1) has the SCP, it suffices to

show that A(k,-1) < 0 for k <M . We consider two cases.

Case I:

* *
vV (k,0) = Z PPE(IE + oV (£,0)) . (Inspection is optimal in
observed state (k,0)) . In this case A(k,-1) reduces to

0, - I < 0 (by Assumption Bl).

Case II:

* *
vV (k,0) = z P + aV (k,1) . (Non-inspection is optimal in

kl)l
state (k,0)) . 1In this case &4(k,-1) becomes




Yp (I 0.3 = {1 o)l + o217 *.0 vk, 1
a / kc\‘l- 9 - k- k Q 2Pka ("’)' (y)

The first term is non-positive from Bl because (Ij - Oj) is non-
increasing in j and Ik - 0k > 0 . The second term is non-positive
as a result of Lemma 3.2.1. Thus A(k,-1) <O Ffor k <M . The

first structural condition (SCl) is now esteblished.

Remark:

Assumption Bl can be weakened to

'. = = '
B': al® (1, -0)sE ~0 20 . khel.

k

To establish the second structural condition (SC2), we consider
the optimality equation (3.1). Let Ait be the difference of the

terms corresponding toc non-inspection and inspection, 1i.e.

ttl il
Ai = E 1% ; Oj + aV (i,t + 1)

) Pgl(l + av’ (5,0))

3
We must show that for any i , for sufficiently large t , inspection

is strictly optimal when in state (i,t) . By Theorem 2.2, it will

be sufficient to show that 1lim Ait > 0 . Rewriting Aic as
torx

t+1 " o t+l
= - + + - (3
Bie z Pij (Oj Ij) a(V (Lo 1) =3 Pij \(J,O))

we apply Lemma 3.2.2 and obtain

*
lim 4, = Oy - IN) +a(l, -V (N,0))

t o




*
Since V (N,0) = 0 , this becomes

lim 4, =0 +al -1 >0 by B2
t—bd)

Hence (SC2) is established. By Theorem 2.3, the proof is now

complete. l

3.3 Structural Results for Model II:

Model II (inspection with repair) can be viewed as a special
case of model I by considering the optimal cost after repair,
V*(0,0) , to be a terminal cost, and including it in the inspection-
repair cost Ij s J > M . Inorder for V*(0,0) to be finite,
of course in this case we must have o < 1 .

We prefer, for reasons of clarity to let Ij » J 2 M include
only the cost of inspection and repair, and leave V*(0,0) separate.

5

This will require only minor modifications to the proof of Theorem 2.2.

We need only modify Assumption B2:

* *
B2': I, + aV (0,0) < oj +a) ij(I + aV (0,0))

3 k

Theorem 3.3:

Under Assumptions Al, A2, Bl, and B2', the conclusion of Theorem
3.2 hold.

The condition B2' means that, in state (j,-1) , j > M,
immediate inspection (and repair) is cheaper than non-inspection
followed by inspection, subsequent actions being optimal. From the
proof of Theorem 2.3, condition B2' is equivalent to inspection

being optimal for all (j,t) , j > M, t > -1,

————
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The problem with B2' is that it involves V*(0,0) , which is
not readily obtainable from the parameters of the process. However,
if an upper bound v Z.V*(0,0) is available, a sufficient condition
for B2' is that the inequality hold, with V substituted for

*
v (0,0)
vy, O v
B2*": Ij + aV < 0j +a) ij(Ik + aV)

Lemma 3.3:

%
If B2'' holds with V>V (0,0) , then B2' holds.

Proof:

Immediate, since the coefficient of V is o on the L.B.S.,
and az on the R.H.S.H
Remark:

One such upper bound V can be obtained by considering the
policy m : "never inspect.'" The expected cost of acting according

to this policy starting in state (0,0) 1is V(0,0,n) =

t t+1 *
2 a z Poj Oj , which is of course not smaller than V (0,0)
t=0 j
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CHAPTER &

AN INVENTORY MODEL WITH RANDOM PRODUCTION

4.1 Introduction

We consider the usual dynamic inventory problem of minimizing
production, shortage, and holding costs over time, subject to
random, periodic demands. (See for example [ 5]). We impose the
added feature, however, that when producing (or ordering) the amount
actually added to stock is random.

The simplest case of this model is the binomial case. Suppose
each item produced has a fixed probability q of being unusable,
independently of all other items produced. It follows that if
production level n is chosen the number of usable items produced
will be distributed Binomial (n,p) , where p =1 - q .

More generally, we will also consider a model in which produc-
tion occurs in discrete batches of random size p . Batch sizes
are assumed independent with a common distribution P(p = j) = pj
When production level n 1is chosen, the number of usable items

n
produced is o(n) = Z pj . The binomial model is, of course, a
b

special case of this with Py = 4 and P, =P . Another special

case is the Poisson model, in which o(n) is distributed Poisson

kJe-X
i

We will assume that demands occuring in each period are in-

(nA) . This corresponds to pj = s J = Qs dew

dependent, discrete random variables Ei > 0, with a common density
P(Ei = j) = qj . Unsatisfied demands will be assumed backlogged
(carried over to the next period). Thus, inventories in successive

periods are linked by the equations

, - ‘ . ‘




(Y, X%

Here X is the initial inventory in period i and yi T Xy + o,
is the inventory after production but before demand is satisfied.

A negative value of X signifies a cumulative excess of demand
over production. We are implicitly assuming that there is no lag
in production, i.e. production undertaken during the current period
will be available to meet that period's demand.

The cost of producing at level n , c(n) , is assumed to be
linear with no set-up cost, i.e. c(n) =nc , ¢ > 0 .

A holding cost h(yi - Ei) is incurred whenever the inventory
after production exceeds demand. A shortage cost k(Ei - yi) is
incurred whenever there is insufficient inventory to meet demand.
We will assume that h(+) and k(+) are nondecreasing functions
which vanish for negative arguments.

If initial inventory is X, and production level ny is

chosen, the cost for period i will be

X stayaise i =Neh S inee. g = E (e = X = g ) .
8 ( Lt | ghE, 1) i ( i i 1) ( i i 1)

We seek a policy m (a rule for choosing ni) to minimize

LEL L
the expected total discounted cost E_ X th(xﬂ,na,cﬂ,:
=0 e i

|
X
) | %g
The number of periods L may be either finite or infinite. The

expectation is with respect to the distribution of :i and the

distribution of 9y induced by 7 through choice of n, .




4.2 Formulation of the Inventory Model as a Markov Inspection Process

We will now show that the inventory process with random production
described above, fits the Markov inspection model of Chapter 2,

The underlying state of the process is the current inventory x .
After observing x , we must decide how many batches to produce. We ?
may consider the decision as being made sequentially as follows:

Suppose t batches have been produced, but the number of usable items

E

they contain, Z p, , has not yet been determined. This corresponds
j=1

to the observable state (x,t) . We may either produce an additional
batch, or terminate production. The former action corresponds to non-
inspection, at cost C , and yields the new observable state (x,t + 1).

The latter action corresponds to inspection, since the new state

t

(y,0) , where y = x + z Py = & becomes known.
i=1

The transition matrix associated with production (non-inspection)

is given by

The transition matrix associated with termination and satisfaction of

demand (inspection) is given by

The coste of non-inspection and inspection, respectively are

0x = C and Ix = h(x) + k(-x)
With these identifications our inventory process becomes a

Markov Inspection Process as defined in 2.1.
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Remark:

The model of Chapter 2 permits greater generality, in that the size

of the j-th batch produced might be allowed to depend on previous pro-
j-1

duction xi+- z pj. This would give rise to a more general transition
k=1

matrix than Pxx' given abcve. However, as it is difficult to see anv

application for this added generality, we will not pursue it further.
We seek to minimize the expected total discounted cost over L

periods, discounting at a rate of 8 per period. The optimality

equation (2.2.2) specializes to

VL(x,t) = min {C + V*(x,t + 1,L);
(4.2.1)

- t ,.7* _
L 20, [h(2) + k(=2) + 8V (2,0,L D1} .

Having identified our inventory model as a Markov Inspection Pro-
cess, we wish to apply the results of Chapter 2 to find conditions for
the optimalitv of a monotone policy. In other words, when is the
optimal ordering level a decreasing function of current inventory,
as intuition suggests?

Note that the matrix P 1is upper triangular. If the distribution
{pj} is such that P is TP, then Assumptions Al and A2 of Chapter 2
are satisfied. (Such distributions are called Polya frequency
functions of order 2). (PFZ) « Sea' [ 6]

Furthermore, since the unit production cost is ¢ > 0 , the second
structural condition (SC2) must hold. Otherwise, for some observed
state (x,t) , continual production is optimal. But this policy has

infinite expected cost, which produces a contradiction.

ErEam—
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Thus the general structure theorem of Chapter 2 (Theorem 2.3)

applies, provided we assume the first structural condition (SCl).

Theorem 4.2:

For the L period production problem with PF2 production
distribution {pj} , linear ordering cost, and general holding and

penalty costs, if there is a critical number x, such that ordering

0

zero is preferred to ordering one when x > x. and not otherwise,

0
(subsequent orders being optimal), then the optimal order size
n*(x,L) is nonincreasing in initial inventory x .

Furthermore, the cost of the policy L (order n , then proceed
optimally), V(x,O,L,nn) , is quasi-convex in n . (A function f(n)

*
is quasi-convex if f(n + 1) < f(n) for n < some n and

*
f(n+ 1) > f(n) for n>n)
The fact that V(X,O,L,ﬂn) is quasi-convex in n is an immediate

consequence of the optimality of one step look-ahead policies

(see (2.3). 18

In the remainder of this chapter we will let V(x,O,L,vn) =
* *
V(X,L,ﬂn) and V (x,0,L) =V (x,L) . Also we will deal only with

the binomial case henceforth.

e Ry e s S T e e

4.3 The Binomial, Single Period Case

AP <

We first note that when production is Binomial the associated :

transition matrix has the form

'

X =X

q
P_,={(p x'"=x+1
0

otherwise.
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It is immediate that P satisfies hypotheses Al and A2 of 2.3; P
is upper triangular and totally positive of order 2.

In order to apply Theorem 4.2, it is sufficient to verify the
structural condition (SCl). That is, we must show that there is a
critical number x

1

and V(x,m,) > V(x,no) for x > x

such that V(x,nl) :_V(x,ﬂo) for x < X

1 (We suppress L for the
single period case). This will imply that the optimal order size

1 and n*(x) >0 for x < X -

To show that the first structural condition holds, it will be

*
n(x) =0 for x>x

necessary to make the following assumptions:

A3: The demand distribution {qj} is a Polya frequency
function of order 2 (PFZ) . That is, the matrix

Q is TP2 (see Assumption A2 of 2.3).

13~ Y-

A4: The function 2(x) = < x + h(x) + k(-x) 1is quasi-convex

o

with a minimum at x 0 , and strictly increasing for

x > 0. (This is equivalent to &(x + 1) - 2(x)

satisfying the SCP in x).
Assumption A3 immediately yields the analog of Lemma 2.3:

Lemma 4.3.1:

1f {qj} is a PF, distribution and m, satisfies the SCP

in j , then ) qm;_; satisfies the SCP in 1 .

Proof:

Apply Lemma 2.3 to the matrix Qij and make a change of

variables. B




Assumption A4 has the following interpretation: Consider

the certainty equivalent problem where we pay % per item and
all orders are filled exactly. Suppose demand in a period is
known. The function 2(x) represents the relative cost of pro-
ducing an excess x over demand. Assumption A4 implies that
2(x) 1is nonincreasing in x for x < 0 , which means that each
additional unit cost of production %~ is more than compensated
for by a decrease in penalty (shortage) cost k(-x) . Thus

%-x + k(-x) + x , x <0 . Clearly, when x >0 , %-x + h(x) + x

(strictly, for c > 0).

Thecrem 4.3:

For the one period problem with binomial production, Assumption
A3 and A4 imply that the optimal production level n*(x) is a non-
increasing function of initial inventory x . Furthermore, for each
x , the cost of the policy "produce n ," V(x,vn) , 1s quasi-convex

'z

*
i a o, f.e. V(x,nn+l) :»V(x,nn) for n < n (x) and V(x,rn+l

*
V(x,wq) for n > n (x)

Proof:

By Theorem 4.2, we need only show that the first structural
condition (SCl) is satisfied, (SC2), (Al), and (A2) having already

been shown. Equivalently, we must show that for some x1 s

V(x,m.) < V(x,ﬂo) when x < X and not when x > X We must
show that 4(x) = V(x,n,) - V(x,vo) satisfies the SCP in x .

By Assumption A4, for 2(x) = % x + h(x) + k(-x) , the successive
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differences 2(x + 1) - 2(x) satisfy the SCP in x . By Assumption

A3 and Lemma 4.3, so does

z q, [¢x+1-2) - e(x - 2)] =

E{e(x+1-¢)~4x=-¢)}=

(4.3.1)
% + El(x + 1) ~ Ql(x) , where Ql(x) =

E {h(x - &) + k(£ - x)}
is the expected storage plus shortage cost when inventory is x
after production. But
A(x) = V(x,nl) - V(x,vo) =
[c + qll(x) + pll(x +1)] - Ql(x) =

c + p(ll(x + 1) = 11(X))

Since the expression in (4.3.1) is just %-A(x) , we conclude that

A(x) also satisfies the SCP, and the proof is concluded. B

Remark:

Note that no assumptions on the form of h(x) and k(x)
are made, other than A4.

There is an alternate approach to obtaining the optimality
of a monotone policy, assuming convexity of h(x) &nd k(x) ,
but without restriction on the demand disctribution. This is the
approach followed in Karlin, Arrow and Scarf [ 4 ]. This method

*
does not extend to the multi-period case, however, because V (x)

need not be convex when h(x) and k(x) are.




»
Example 4.3.1: (Non-Convexity of the Optimal Cost Function V (x))

* *
Let V (») =V (x,1) be the optimal cost function for the
one period problem with initial inventory x . Let V(x,rn} be

the epected cost under the policy "produce n items."
P )

1 3u a >0
Suppose p = 5 c=1, h(u) =0 and k(u) = :
?0 u <20

Assume also that the demand £ = 2 .
* *
Clearly V (2) = 0 and nl(2) =0 .

For x = 1 we compute as follows:

V(X,ﬂo) = k(1) =3
V(x,m,) = c + qk(1) = 2 1/2
V(x,m,) = 2c + 2 (1)) = 2 3/4

By quasi-convexity in k of V(x,nk) (Theoram 4.3), we may
* *
conclude that V (1) = 2 1/2 and n (1) = 1 .

Similarly, for x

0 we compute

V(O,TY ) o k(z) =6

V(0,m.) = ¢ + qk(2) + pk(1) = 5 1/2

V(0,7,) = 2¢ + q°k(2) + 2pqk(1) = 5

V(0,m5) = 3¢ + ¢Ok(2) + 3q%pk(l) = 4 7/8
A 4 3

V(O,nA) = 4c + q k(2) + 4q pk(l) = 51/8

Again by Theorem 4.3, since V(O,w3) < V(O,ﬂa) and

*
v(0,m5) < V(O,ﬂj) , J <3, we can conclude that V (0) = 4 7/8

X
and n (0) = 3

39
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%
Thus V (x) can be tabulated:

*
We see immediately that V (x) 1is strictly concave on the set {0,1,2}.

When the holding and shortage costs are linear, say h(u) = hu

*
and k(u) = ku , respectively, we can determine n (x) by the follow~

ing reasoning: Suppose we have produced, but not inspected, n 1items.

Let o(n) be the Binomial (n;p) random variable denoting usable
output. The expected cost of producing an additional item is

c + hpP(x + o(n) > %) , which is nondecreasing in n . The expected
gain from producing an additional item is kpP(x + o(n) < £) which

is nonincreasing in n . It follows that

n*(x) = min {n : kpP(x + o(n) < £) < c + hpP(x + o(n) > &)

= min {n s Ploln) < § = x) 5_5%1112%7} .

From this relationship several interesting conclusions can be drawn.

Lemma 4.3.2:

In the case where all costs are linear:

*
(a) n (x) depends on ¢ , h , and k only through p§k++2:) ]

*
(b) n (x) 1is nonincreasing in ¢ and h and nondecreasing

in k .

(¢) Production is optimal only when p > Po = % :
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The dependence of n*(x) on p 1is more subtle. The next
example (4.3.2) shows that n*(x) need not be a monotone function
of p for a given x , even when £ = D (deterministic demand).

Note that it is optimal to produce if and only if p 28" ﬁ-,
provided x < D . The optimal production level n* appears to be
unimodal as a function of p for fixed x . Thus, when p 1is near
Py > and when p 1is near 1 , n* =D~ x , but n* may be strictly

larger than D - x for intermediate values of p . For p near

Pg it is optimal to produce D - x , but no "spares." This is |
because p 1is so small that the expected reduction in shortage cost
from producing a spare is less than the unit production cost c .

In Example 4.3.2 the optimal cost V* = V*(O) is a nonincreasing

function of p . This is true in general for the one period case.

Lemma 4.3.3:

*
For fixed inventory x , the optimal cost V (x) is a non-

increasing function of p .

Proof:

When the holding cost is zero, for a fixed ordering level n the
expected cost is cn + kE max (§ - x - ¢(n),0) . This is a continuous,
nonincreasing function of p . The result follows immediately in
this case, since V*(x) is the minimum of the above functions.

When the holding cost h 1is non-zero the expected cost of an order

size n is cn + kE max (§ - x - 0(n),0) + hE max (x + o(n) - £,0)

which increases for p > Py and decreases for p < P for some P

*
It can be shown that n <n for p > Py which would imply the

result. We omit the proof.
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*
Example 4.3.2: Variation of Optimal Order Size n (x) and Optimal

*
Cost V (x) as a Function of p for Fixed x

Consider the one period linear problem with ¢ =1, k =4 |
h=0,x=0, and D=2 .

* *
Note that for p<+=.25,n =0 and V =2k =8 . For

|0

*
p=1,n =2 and V

2c = 2 . For intermediate values of p ,
* * ] . *
n and V are given in the following table. Note that n rises

*
to a maximum and then decreases, while V is continuously decreasing

in the interval [0,1]

4.4 The Multiperiod, Binomial Case: A Counter-Example and a Result

The result of the previous section concerning the optimality
of monotone ordering policies for the single period case, does not
extend without restriction to the multiperiod case. The following
example is a 2 period problem with linear ordering, holding, and
shortage costs and a constant demand, for which a monotone policy is

not optimal.

Example 4.4: An Example in Which a Monotone Policy is Not Optimal

We set ¢ =1, k(u) = 3u, h(u) = hu , p = %’, and £ = 2
Assume h <1 .
Consider first the single period case. Note that with h = 0

this is identical to Example 4.3.1. A similar calculation shows the

following result:




*
TABLE OF n

EXAMPLE 4.3.2

*
AND V  AS A FUNCTION CF P

P n v
0-.25 0 8.0
.26 2 7.92
.28 3 Ta73
.30 3 7.5l
«35 4 6.97
.40 4 6.42
.45 4 5.93
.50 3 5.5
.55 3 5.07
.60 ¢ 4.66
.65 3 4.30
.70 3 3.97
1D 3 3.69
.80 3 3.45
+85 2 3.2
.90 2 2.8
« 99 2 2.4
1.0 2 2.0
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* *

x n (x,1) vV (x,1)

2 0 0

1 1 2.5

0 3 4,875 + .125h

Analysis of the two period case is dependent on the value

of h :
* *
X n (x,2) v (xnz)
4 0 2h
{1 2.25 + 1.5h k< 172
3
0 2.5+ h h > 1/2
f {2 4.46875 + 1,03125h  h < .448
. 2
0 4.875 + .125h h > .448

Thus we see that for .448 < h < .5, n*(2,2) =0 and
n;(3,2) =1 . The optimal policy is not monotone.

A further analysis of the two period case reveals that a one-
stage look-ahead policy is not optimal. Let T be the policy:
order k during the first period, then continue optimally. For

this example the following behavior may be observed, given initial

inventory of 2 with two periods remaining.

Ty < ™ < "0 0 <h < .429
Ty <My <M 429 < h < .448
i <m,<m 448 < h < 467
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(Here mo< ﬂj means V(2,2,m,) < V(2,2,nj)). For .429 < h < .467 ,

V(2,2,nn) is not quasi-convex in n and the one stage look-ahead
policy is not optimal.

Example 4.4b: A Second Example in Which a Monotone Policy is Not
Optimal

We modify the previous example by setting the holding cost
h = 0 and imposing a discount factor £ <1 .

We consider the two period case.

* *
x n (x,2) V (x,2)
4 0 0
0 2.58 g < .8
3
1 1+ 1.258 g > .8
{0 4,8758 g < .831
2
2 2 + 2.468758 B> 831
Thus we see that in the interval g8 = .8 to B = .,831 , a

monotone policy is not optimal.

The above example illustrates the effect of the concavity
of V*(x,l) on optimal policies for the two period case. The
closer initial inventory is to total demand 2D , the greater the
expected reward for ordering an additional item. This leads to
the possible optimality of non-monotone policies in he case of
positive holding cost or discount factor B < 1 .

However, in the non-discounted multiperiod case with no holding

cost, a monotone policy is optimal.




Before proving this result we state a lemma which is valid

under very general conditions:

Lemma 4.4:

*
If n (x,2) >0, then
* c *
Vv (x,8) :_;-+ V (x +1,80)

Proof:

Given the option to inspect the first item produced and revise
initial lot size accordingly, the optimal cost for £ periods,

starting with inventory x would be

* * *
¢+ gV (x;8) ¢ pV (x + 1,0) <V (x,0)

The R.H.S. represents the optimal cost in the absence of such an

option.

Remark:

This result shows that, when it is optimal to order, the value
of an additional item in stock is at least as large as its

"certainty equivalent price," c/p .

Theorem 4.4:

For the 2 period, undiscounted problem with binomial production,
if there is no holding cost (h(u) = 0) , then assumptions A3 and

A4 imply:
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*
(a) The optimal initial production lot size n (x,%) is
a nonincreasing function of initial inventory x .
(b) The expected cost of the policy “n ¢ produce n ,
then choose all subsequent lot sizes optimally,
V(x,l,nn) , is quasi-convex in n .
Proof:
By Theorem 4.2, we need only show that A(x,2) satisfies
the SCP in x . Equivalently we must show the existence of a critical

number X, such that V(x,l,nl) :_V(x,l,no) for x < X, and

V(x,l,wl) > V(x,l,no) for x > %, .

Proceeding inductively on 2 , we note that the result has

previously been shown for 2 =1 . Assume that A(x,? - 1) satisfies

the SCP in x and x, ; = min {x : &(x,2 - 1) > 0} > 0 .

*
By the induction hypothesis, n (x,2 - 1) = 0 for x 3_x2_1 -

*

Thus V (x,2 - 1) 1is also the expected £ - 1 period cost when
inventory is x after initial production. For x 2Xoq o
V(x,2 - l,no) < V(x,t - 1,m.) , or equivalently

* * *
V (x,2 -1) <c+pV (x+ 1,8 -1) + qV (x,2 - 1)

*

This shows that % x +V (x,2 - 1) 1is strictly increasing in x
for x 2% -
Analogously to the proof of Theorem 4.3, let m(x) =

*
% x + k(-x) +V (x,& - 1) . Since k(-x) =0 for x L3 Y G 0,

the preceding remark implies that m(x) is strictly increasing




By Lemma 4.4 and monotonicity of k(-x) , m(x) 1is nonincreasing

for x We have shown that m(x + 1) - m(x) satisfies

= ¥
the SCP in x . As in the proof of Theorem 4.3, this implies that
A(x,2) = pE {m(x + 1 - &) - m(x - £)} satisfies the SCF in x .

To ccmplete the induction, it will suffice to prove that

X, = min fx : A¢x,0) =0} 2% g - We have shown that
m(x + 1) ~m(x) <0 for x f-xz—l . Thus A&(x,L) =
pE {m(x + 1 - %) -m(x ~£)} <0 for «x :'xl—l . It follows that
X, 2% ;s which completes the procf. W
We have also proven the following:
Lemma 4.4.2:

Under the hypotheses of Theorem 4.4, if it is optimal to order
when stock is x and & periods remain, it is also optimal to

order when &' period remain, o' > 2 .

Remark:

We have not been able to show that the optimal production level

*
ni(x) is nondecreasing in & . This seems to be an open question.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

We present a general model of a process which requires costly
inspection in order to determine the state. At any time two alterna-
tives are available: to inspect the process (which may alter it),
or not to inspect.

The optimal time interval between successive inspections is
shown to be a decreasing function of the state at last inspection,
under conditions specified herein.

Our model is applicable to a wide variety of deteriorating
processes, including repairable and non-repairable machines, and a
class of inventory problems with uncertain ordering.

The results presented illuminate the structure of optimal

inspection policies and are useful in computing such policies.
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